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Abstract—We evaluate the impact of different data modalities
for pre-trained transformers to investigate the inherit value of
different data types in large models. We find that given the
correct situation, pre-trained models can sometimes be used
to bootstrap effectively for certain tasks even when the pre-
training modality is different than the downstream modality.
Furthermore, it appears in our evaluations that natural language
more consistently performs well across modalities. While this is
not a surefire trick that always works or can always be useful,
it is an interesting finding that certain model architectures can
learn representations that may be useful across different data
modalities.

I. INTRODUCTION

Recently, large transformer models have seen an abun-
dance of success when used for downstream classification
or generation tasks of the same modality. We are interested
in evaluating if large transformer models can be used for
downstream tasks across different modalities. In other words,
can a large language transformer model such as GPT2 that was
trained on natural language tasks, be used to pre-train an image
classifier? This question has been explored by Lu et al. [4], in
their work: Transformers as Universal Computation Engines.
We will be attempting different types of transfer learning to
see if this is consistently reproducible and, if the modality
really matters.

The value of pre-training transformers has already been
made abundantly clear when fine-tuning a large transformer
model to perform a downstream task for models trained on
the same modality as the downstream task. This has become a
common practice in the NLP community as larger and larger
language models prove to generalize well to many different
natural language tasks. Some examples of this are fine-tuning
models such as TS5 for text to SQL generation or using BERT
for sentiment analysis. We want to explore if this same idea
can be used across modalities to enable generalizable pre-
training.

The hypothesized theory behind this technique is that for
certain modalities, or potentially any modality, transformers
can learn feature representations in the attention layers than
can translate to other arbitrary downstream modalities. If the
model can accurately learn these feature representations, it
could potentially be used to bootstrap other models. This
would make the case that the pre-trained models could po-
tentially be used as a more effective initialization method
regardless of the pre-training dataset.

Andrew Havard
Southern Methodist University
ahavard @smu.edu

Jonathan Ebrahimian
Southern Methodist University
jebrahimian @smu.edu

We explore this idea by adding our own input and output
layers to two different transformer models and testing different
pre-training and fine-tuning strategies.

II. BACKGROUND

In 2017, Vaswani et al. [1] published their work regarding
transformer networks. The transformer network consists of an
encoder and decoder stack, where a stack refers to a set of
identical encoder or decoder layers. Both the encoder and
decoder layers use multi-headed self-attention to allow the
model to focus on certain combinations of data. Since the
transformer is an auto-regressive model, meaning that it deals
with sequences of data, this architecture allows it focus on
certain combinations of data across the sequence of data (eg.
different words in a sentence) and learn representations of that
data in such a way that it can be interpreted downstream. With
this architecture, Vaswani et al. achieved new state-of-the-
art performances in language translation tasks, which lead to
transformers’ rise in popularity in the field of natural language
processing.

In 2020, Qi et al. [2] introduced ImageBERT, a type of
transformer which examines data across different modalities
in order to try to understand the relationship between those
modalities and make some sort of prediction based upon
that relationship. In their case, they used a combination of
images with corresponding text descriptions to try to predict a
description of a given image. After fine-tuning their model,
they achieved a new state-of-the-art performance for this
task, showing promise for research involving cross-modality
networks.

In 2022, Reid et al. [5] investigated whether they could pre-
train a transformer on one modality to improve training speed
in another. They used a pre-trained GPT2 model, a model
trained on natural language, to bootstrap a reinforcement
learning model to play several Atari games. They found that
their pre-trained transformer model converged roughly 3-6
times faster than a different, state-of-the-art model trained
from scratch, while still achieving similar performance. This
research was similar to work done by Lu et al. [4] in 2021, in
which they used a pre-trained GPT2 model to train for several
tasks, including image classification, bit memory, and protein
folding. They found that despite the difference in modality,
they still saw advantages both computationally and in terms
of performance from pre-training on a modality completely



separate from the given task, compared to an LSTM and fully
retraining the model.

In 2022, Li et al. [3] published their research on BLIP, a
vision transformer dedicated to both understanding informa-
tion across modalities (in their case, images and text) and
also generative tasks. They do this by training their vision
transformer across multiple tasks: encoding across modalities,
encoding only images, and decoding text. They found that
by doing this, they were able to equal or outperform other
state-of-the-art vision transformers in tasks between modalities
such as image-to-text retrieval and image captioning with less
training data. They also outperformed or closely equaled state-
of-the-art models in tasks across modalities such as visual
question answering (given an image and a question, supply
an answer to the question).

III. METHODOLOGY

We evaluate whether different modalities of data have differ-
ing pre-training and bootstrapping capabilities when compared
to each other through a series of tests. The main set of evalu-
ations comes from comparing two different models that were
trained on two different modalities. We chose two models,
GPT2 and ViT-16-224k, for the following reasons:

o There is evidence from previous works that these models
can be trained effectively across modalities.

o These models are small enough to fit within our training
budgets.

o The models are not too dissimilar in architecture to where
it may be a completely unfair comparison.

Ideally we would have used the same model trained on
completely different modalities; however, we could not find
quality transformer models that have been trained in such a
way that also meet our other selection criteria.

We train each model type in 3 different ways:

1) We train with no pre-training at all, such that the weights
are completely untrained.

2) We train the model with the pre-trained weights and all
of the layers unfrozen, such that we are fully fine-tuning
the model.

3) We train the model in the fashion outlined in [4] where
only input, output, positional embeddings, and layer-
norms are fine-tuned. This is hypothesized to preserve
feature representations across modalities in attention
layers where relations in arbitrary data sequences are
learned.

For our experiments, we only train for 250 epochs because
non-trivial datasets require an extremely long training duration
with enormous computational requirements to saturate the
large number of weights and fully train to convergence. As a
result of this, the results do not display fully converged models.
Significant emphasis should be placed on the training speed
and starting performances instead of only end results.

We evaluated on three main datasets to explore different
modalities and to inspect whether the relative difficulty of
the task for the modality can have a significant impact. For

these tests we selected MNIST and CIFARI10 as image-based
datasets to specifically evaluate how different pre-training
works with images, and how varying image classification
difficulties perform. We also attempted a sentiment analysis
task with the IMDB movie review dataset to evaluate an NLP
task.

For all of our experiments we attempted to keep configu-
ration and hyperparameters as consistent as possible to make
fair comparisons, even at the cost of performance. Using better
hyperparameters and configurations would surely create better
results, but we want to be able to clearly identify where gains
and losses come from. More specifically, we used an input
layer that connects to an embedding of size 768 for all models,
and an output layer that is based on the number of output
classes. The models are all trained with Adam optimization
and a patch size of 4. The learning rate is the only parameter
that is tuned based on the methodology. This is because the
different methodologies will have drastically different training
objectives. For the models without pre-training we used a
learning rate of 1x 10~3, with pre-training and partial freezing
we used 1 x 107°, and a learning rate of 1 x 10~ for the
fully unfrozen pre-trained models. Each model is trained on a
specific dataset with the same relative batch size for a given
dataset, 100 steps per epoch, and 250 epochs total. Ideally we
could run experiments across the same models with different
pre-training and not have to worry about hyperparameters, but
we prioritized consistency.

IV. EMPIRICAL EVALUATION

In this section, we look to determine whether benefits from
pre-training exist, to what extent, and if they can be preserved
across modalities.

A. Final Training Performance

After completing the training for 250 epochs for each model
and dataset we can see some interesting results in Table
1. Pre-training clearly has some benefits when doing short
term training on a simple dataset even when the pre-training
modality is completely different. While the difference between
the two models is small in all cases, it is clear that when you
compare the training methodologies the results are dramatic. It
should be noted however, that when training for significantly
longer all of these results will eventually converge and get
extremely high performance given how trivial the task of
MNIST is. Nonetheless, pre-training here seems to be a decent
way of bootstrapping this kind of task.

Moving on to looking at CIFAR at the same time frame, we
can see some more variation. Clearly the more challenging task
is going to take significantly longer for the model to saturate
and converge so these results are fairly unimpressive. However,
we can still see that pre-training looks like it has a significant
leg up on the other training methodologies; however, it would
stand to reason that such results are somewhat meaningless
when the peak accuracy is so poor. Future work would likely
benefit from evaluating much smaller transformer models such



TABLE 1

MNIST FINAL TRAINING PERFORMANCE

Model Training Methodology
Type | Pre-trained and Partially Frozen | Pre-trained and Fully Unfrozen | No Pre-training
GPT2 74% 33% 53%
ViT 69% 34% 46%
TABLE 2
CIFAR10 FINAL TRAINING PERFORMANCE
Model Training Methodology
Type Pre-trained and Partially Frozen | Pre-trained and Fully Unfrozen | No Pre-training
GPT2 28% 13% 19%
ViT 26% 19% 19%
TABLE 3
IMDB FINAL TRAINING PERFORMANCE
Model Training Methodology
Type | Pre-trained and Partially Frozen | Pre-trained and Fully Unfrozen | No Pre-training
GPT2 52% 49% 52%
ViT 49% 53% 51%

as minGPT to determine how parameter scaling is affected by
cross-modality pre-training.

The last dataset to evaluate is IMDB movie reviews. For this
task we are classifying whether movie reviews are positive or
negative based on natural language. This task, in our opinion,
is significantly more complex than the others. However, it is
challenging to curate a fair example across domains. There are
no NLP tasks that are comparably trivial when compared to
MNIST or potentially even CIFAR10. Regardless, we present
these results in Table 3 to indicate how the methodologies we
explored are not without significant fault. Clearly none of the
models have learned enough to be fairly evaluated as none of
them are significantly better than random choice. It seems that
in more challenging tasks, there is a less significant, if any,
performance boost in bootstrapping the model. It would be
interesting to reexamine this after many thousands of epochs
to see if it is possible to get the Vision Transformer to learn
this downstream task.

Interestingly, across the board, if the model can start to
effectively learn in this short time span, the pre-training has a
significant boost in performance. The pre-training modality is
less significant than we would expect as well. GPT2 seems to
hold up fairly competitively and is even better in certain cases
than the Vision Transformer in the image-classification tasks.

B. Bootstrapping Performance

As suggested earlier, another evaluation criteria that may
give insight into the potential benefits of pre-training is the
model’s performance immediately and earlier into the training.
The question really is, does pre-training give the model a head
start even when the downstream modality is different? This
effect can be measured at different points in time but for the
sake of this research we will be evaluating the performance
within 25 epochs. We also exclude the IMDB dataset from

this evaluation as we have already discussed that nothing
interesting was learned in this short training duration, and
so there are no interesting insights to extract from the early
performance on this task.

This cutoff for evaluating early performance was selected
because it should be early enough in the training to display
gains that are primarily driven by the starting values of
the weights without giving too much of an advantage to
shared modality experiments where we would expect better
performance in the first handful of epochs.

Looking at the results in Tables 4 and 5, we can see that
pre-training can be largely hit or miss. We would expect a
significant boost in pre-training performance for the vision
transformer for both tasks. However, the results in MNIST
and CIFARIO contrast starkly. In the MNIST experiment we
can see a significant early performance gain for the vision
transformer, but in the CIFAR experiment the gap is much
smaller. We hypothesize that in more complex downstream
tasks, models cannot efficiently fine-tune large parameter
counts, due to an increased total modification to the base
weights being required.

While the initial gains are not what might be expected,
how is it possible that in some cases the pre-training results
in better final results? It seems as though given a bit of
time to start fitting to the data, models learn to fit around
the existing weights rather than just fitting to the task like
would be expected when training from scratch. We suppose
this because the input and output layers will always start as
complete noise since they have never been pre-trained, so
the first few epochs saturate these layers and then the model
begins to tune around the contrast between the existing and
new layers. This theory is not fully supported by our testing
and would require further research, but the idea that arbitrary
feature representations could potentially be across tasks and



TABLE 4
MNIST EARLY TRAINING PERFORMANCE

Model Training Methodology

Type | Pre-trained and Partially Frozen | Pre-trained and Fully Unfrozen | No Pre-training
GPT2 22% 15% 32%

ViT 53% 11% 27%

TABLE 5
CIFAR10 EARLY TRAINING PERFORMANCE

Model Training Methodology

Type Pre-trained and Partially Frozen | Pre-trained and Fully Unfrozen | No Pre-training
GPT2 13% 10% 17%

ViT 15% 12% 20%

modalities is interesting.

C. Training Speedups

The pre-training with partial freezing that applies the
methodology of the Frozen Pre-trained Transformer [4] has
some benefits outside of potential bootstrapping for early
improved performance on downstream tasks. Since only a
fraction of the total parameters are receiving updates during
the fine-tuning process, the training is significantly faster. This
effect only increases should we scale to larger and larger
models. As compute demands have grown dramatically in
recent years to be able to leverage increasingly large models,
this technique enables faster training with less total compute.
If the task can be effectively bootstrapped with pre-training it
may prove to be beneficial to try the largest possible model
regardless of the modality of the data that the model was pre-
trained on. If this scenario is viable for a given task it can
enable more efficient use of compute resources and energy,
as well as more centralized model usage which results in
auxiliary benefits such as improved tooling and infrastructure.
This is a driving motivation of this research. Should techniques
to transfer large transformers across tasks and modalities
display promise in reducing compute and energy needs, then
the centralization of effort into creating general-purpose large
transformers to use as pre-training for downstream tasks could
potentially be a method for universal models. For this to be
viable, two conditions must be met. Firstly, the performance
on the tasks need to be high, which our results are inconclusive
towards. Additionally, the training requirements should be low.

TABLE 6
TRAINING DURATION (SECONDS/EPOCH)

Method Mean | Standard Deviation
Pre-trained Partially Frozen | 4.946 1.442
Pre-trained Fully Unfrozen | 8.123 2.862

No Pre-training 8.395 3.742

Looking at the training times for different tasks in Table 6,
we can see that pre-training with frozen attention and feed-
forward layers results in pretty dramatic reductions in training
time per epoch. The potential to gain a near 50% speedup in

training time per epoch is very enticing. Additionally, the time
per epoch becomes more stable as the number of parameters
receiving updates during training decreases.

V. CONCLUSION

Our experimentation resulted in some fairly inconclusive
results. While there were some promising results showing
that it is sometimes possible to gain an advantage when pre-
training large models regardless of the pre-training modality,
we had lots of conflicting results that make it impossible to
claim that this method works or is consistent across all or many
tasks and pre-training modalities. Nonetheless, we suggest that
it may be worthwhile evaluating these strategies for different
architectures and datasets to see if there can be any benefits
gained.

Moving forward, we would continue this research by eval-
uating on a larger variety of data and model architectures
and experimenting by actually evaluating each model with
more specific hyperparameters that encourage success for the
specific model, rather than just enforcing consistency for the
sake of fairness. Another potential avenue that could yield
interesting results is the exploration of fusion models that
are pre-trained on multiple modalities at once as a baseline
model. As these models, such as those outlined by Li et al.
[3], learn feature representations that are more flexible, we
could potentially see greater pre-training potential and more
universal models.
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